Teorema de Liouville (análisis complejo)


Teorema de Liouville (análisis complejo)
Teorema de Liouville: Sea una función entera y acotada (es decir existe tal que ), entonces resulta que es constante.

Enciclopedia Universal. 2012.

Mira otros diccionarios:

  • Teorema de Liouville (análisis complejo) — Para otros teoremas homónimos, véase Teorema de Liouville. En matemáticas, y en particular en el análisis complejo, el teorema de Liouville afirma que si una función es holomorfa en todo el plano complejo y está acotada, entonces es constante.… …   Wikipedia Español

  • Teorema de Liouville — Existen varios teoremas conocidos como Teorema de Liouville atribuidos a Joseph Liouville: En análisis complejo, ver Teorema de Liouville (análisis complejo). En mecánica hamiltoniana, ver Teorema de Liouville (mecánica hamiltoniana). En… …   Wikipedia Español

  • Análisis complejo — Gráfico de la función f(z)=(z2 1)(z 2 i)2/(z2+2+2i). La coloración representa el argumento de la función, mientas que el brillo representa el módulo. El análisis complejo es la rama de las matemáticas que en parte investiga las funciones… …   Wikipedia Español

  • Análisis matemático — El estudio del conjunto de Mandelbrot que es un objeto fractal con autosimilaridad estadística involucra diversas áreas del análisis matemático, el análisis de la convergencia, la teoría de la medida, la geometría y la teoría de la probabilidad y …   Wikipedia Español

  • Teorema fundamental del álgebra — El teorema fundamental del álgebra establece que un polinomio en una variable, no constante y con coeficientes complejos, tiene tantas raíces[1] como indica su grado, contando las raíces con sus multiplicidades. En otras palabras, dado un… …   Wikipedia Español

  • Joseph Liouville — Joseph Liouville. Nacimiento 24 de marzo de 1809 …   Wikipedia Español

  • Función armónica — En matemáticas, sea f : D → R (donde D es un subconjunto abierto de Rn) una función real de n variables, se la llama armónica en D si sobre D tiene derivadas parciales continuas de primer y segundo orden y satisfacen la ecuación de Laplace… …   Wikipedia Español

  • Espectro de un operador — Saltar a navegación, búsqueda El espectro de un operador es un conjunto de valores complejos que generaliza el concepto de valor propio (autovalor) a espacios vectoriales de dimensión infinita. El concepto es muy importante tanto en análisis… …   Wikipedia Español

  • Número π — π (pi) es la relación entre la longitud de una circunferencia y su diámetro, en geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El… …   Wikipedia Español

  • Función elíptica — En análisis complejo, una función elíptica es, hablando toscamente, una función definida sobre el plano complejo y periódica en ambas direcciones. Las funciones elípticas pueden ser vistas como generalizaciones de las funciones trigonométricas… …   Wikipedia Español